Tipărire

Artistul german Albrecht Durer, unul din promotorii Renașterii în nordul Europei și unul dintre cei mai de seamă contributori la teoria artei, a avut realizări importante și în matematică.
El a întocmit un îndrumător pentru măsurarea cu rigla și compasul, a prezentat construcția spiralelor cu compasul, a utilizat metoda proiecțiilor ortogonale duble și a descris epicicloida și curba scoică și a realizat o generalizare a concoidei lui Nicomede.
Într-una din cele mai cunoscute și misterioase opere ale sale intitulată „Melancolia I”, Durer a înfățișat un careu magic absolut fabulos, pe care îl prezentăm și noi mai jos:

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

Acest careu este într-adevăr spectaculos, deoarece pe lângă proprietatea caracteristică pătratelor magice de a avea suma numerelor de pe linii, coloane și diagonale constantă (în cazul de față egală cu 34), el mai posedă câteva moduri uimitoare de a fi împărțit în 4 regiuni  a câte 4 numere cu suma egală cu 34.
Puteți spune Câte moduri de acest fel mai există și care sunt acestea?